

Qualifiers Round Schedule

Task Analysis (10 min)

Task Development (60 min)

Interval (15 min)

Continuation of Task Development (60 min)

Task Submission (5 min)

TOP 10 FINALISTS ANNOUNCED!

- 2 -

CodeLift: Rise to the Elevator Simulation Challenge!

In the bustling world we live in, elevators are essential for vertical transportation. To ensure

their smooth operation, sophisticated software systems govern their movement, safety

features, and user interactions.

In CodeLift, your task is to simulate an elevator software using Java. Design a text-based

program that simulates a hotel elevator system to transport passengers between the following

floors, considering a maximum passengers capacity limit of four (4) passengers:

− Garage Floors (-2 and -1): Entry/exit for hotel guests.

− Ground Floor (Reception): Hotel access point.

− Guest Room Floors (1-5): Transport to guest rooms.

Functionality #1: Elevator Control Interface

1. The control panel prompts to enter the number of passengers who are entering the

elevator whenever the elevator door opens. Inputting [X] indicates that no passengers are

getting on the lift.

2. Upon entering the elevator, passengers will be asked to input their desired floor. The

available floor options are: [-2] [-1] [0] [1] [2] [3] [4] [5].

- 3 -

Functionality #2: Floor Movement

1. The elevator moves between floors based on passengers’ choice. The lift should follow the

sequence of floors entered by the passengers.

For example, if passenger 1 enters [3], passenger 2 enter [-2], and passenger 3 enters [4], the

elevator will start by going to floor 3, then to floor -2 and then to floor 4.

2. When the elevator stops on a floor chosen by the passenger, it is assumed that the

respective passenger/s exit the elevator automatically.

For instance, let's imagine there are three passengers inside the elevator with the following floor

choices: passengers 1 and 2 select floor [4], while passenger 3 chooses floor [2]. As the elevator

reaches floor 4, passengers 1 and 2 will automatically exit the lift, resulting in an updated passenger

count of one.

3. If there are no passengers entering the lift, i.e. if the user presses [X], the elevator proceeds

to the next floor if there are still passengers in it.

4. When there are no passengers in the elevator, the elevator remains waiting at the last floor

it stopped on, awaiting further instructions.

5. Each floor transition takes 1s (1000ms) to complete.

Code Hint: the below code displays the string ‘Before Delay’, then it waits for 2 seconds and then
displays the string ‘After Delay’. This sample code can be used to create a visual of the elevator
movement.

System.out.println("Before delay"); //display on screen

//time delay instructions

try {

Thread.sleep(2000); //Delay for 2 seconds (2000 milliseconds)

} catch (InterruptedException e) {

e.printStackTrace();

}

System.out.println("\fAfter delay"); //display on screen

− The try … catch routine is used to wait for a number of milliseconds.

− The escape character “\f” clears the screen to refresh screen visuals.

- 4 -

Functionality #3: Lift Capacity

1. Track the number of passengers currently inside the lift.

2. Limit the number of passengers in the lift to a maximum of four (4) at any point in time.

Functionality #4: Validation Processes

1. Validation is required on the instructions inputted by the user:

− Number of passengers entering the elevator or [X] for no passengers.

− Passenger’s floor choice when entering the elevator.

2. User instructions are not case sensitive.

3. A warning message should be prompted for invalid instructions.

4. Validation is required to avoid any possible runtime error.

5. Handle instances when exceeding the elevator's capacity.

6. Provide appropriate error messages and allow users to correct their input.

Functionality #5: User Interface.

Create a text-based interface that displays the current state of the elevator system and allows

users to interact with it. Refer to screenshot 1, in page 5, for a comprehensive sample user

interface.

Here are some suggestions for the user interface:

1. Display the Current State: Show the number of passengers inside, current floor of the

elevator, and the next floor level movement. For example:

 1 2 4

OR

Number of persons in lift: 1

Current Floor: 2

Next Floor: 4

- 5 -

2. Elevator Movement Visualization: Create a visual representation of the elevator moving

between floors. In the sample visualisation shown below the lift is represented using the

‘ ^ ’ sign.

| -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |

 ^

Make sure that this visualisation is updated during the elevator movement, considering 1 second

(1000 milliseconds) of delay from one floor to another.

Screenshot 1: Sample user-interface

Name the class containing the main method RunApp.

Submit your program in a folder named CodeLift

- 6 -

Assessment Rubric

Overall

Program

Functionality

User-

Friendly

Interface

Proper

use of

Comments

Proper

Conventions
(Camel case,

meaningful var

names etc.)

Name of

Folder &

Class/es

User

Input

Suitable

Prompts /

Messages

displayed

Update of

Elevator

Status

Update

Elevator

Movement

Visualisation

Animate

Elevator

movement

between

floors

Elevator

movement

follows

passengers’
floor sequence

Proper use

of Data

Structures

Maximum Score: 38
+ 2 for every extra

feature.

Validations

Modular

Code

Code

Efficiency

Number of

passengers

entering

elevator or

[x] for none

Floor

Number.

Elevator

Capacity Limit

Avoid

Runtime errors

Instruction

Case

Sensitivity

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

- 7 -

