

Final Round Schedule

Task Analysis (10 min)

Task Development (90 min)

Interval (15 min)

Continuation of Task Development (90 min)

Task Submission (5 min)

TOP 3 CODE.SPRINTERS ANNOUNCED

- 2 -

LingoQuest - Text-based Wordle Game!

This challenge requires the development of a text-based game called "LingoQuest". The game is

a variation of the popular Wordle game, where players attempt to guess a five-letter target word

within six attempts. You need to implement the core game mechanics, including user input,

feedback, and validation.

Functionality #1: Game Play

1. LingoQuest allows the player to play against the ’Computer’, or against another Player. The

game should ask the user whether to play in one-player mode or two-player mode or to exit

the game.

2. The user should enter [1] to play in one-player mode, [2] to play in two-player mode or [exit]

to quit the game.

3. If the player chooses to play in one-player mode, the program should randomly choose a

five-letter target word from a list of words. Check table 1 below for the list of words to be

hard coded.

apple lemon mango dance tiger

clock mouse pizza chair water

Table 1: List of words

4. If the player chooses to play in two-player mode, the first player should enter the target five-

letter word, the screen is then cleared, and the second player should then guess the word.

Hint: you can use the ”/f” escape character to clear the screen.

- 3 -

Functionality #2: Game Rules

1. Limit the number of guesses to six chances per game.

2. Provide feedback on each guess using symbols or emojis to indicate correct letters in the

correct or wrong positions, or incorrect letters, such as the below:

Emoji or symbol Description

 or ‘ + ‘ letter in the correct position.

 or ‘ ? ‘ letter exists in the target word but not in correct position.

 or ‘ – ‘ letter is not present in the target word.

For example, if the secret word is ‘lemon’ and the user enters the word ‘lingo’, the

feedback might be +-?-? or

Note: if a player enters a word with two identical letters, and only one of those letters

matches a letter in the secret word, prioritize marking the first occurrence and indicate the

second occurrence with a '-' or .

For instance, if the secret word is 'lemon' and the player enters 'green', the hint should

be --?-+ or to signify that there is only one occurrence of the letter 'e'.

3. Provide the player with the option to end the guessing process during gameplay by entering

the word 'exit'.

4. Display a proper message when the user guesses the target word.

5. Display a proper message and the target word if the player fails to guess it.

Functionality #3: Validation

1. Ensure that the user enters [1], [2] or [X] to choose player mode or to quit the game.

2. During gameplay, ensure that the user input is a five-letter word consisting of alphabetical

characters only, except when the user enters ‘exit’ to stop guessing the target word.

3. User input is not case sensitive.

4. Validation is required to avoid any possible runtime error.

5. Provide appropriate error messages and allow users to re-enter their input.

6. The player's chances to guess the target word is unaffected by any invalid user input.

- 4 -

Functionality #4: User Interface

Implement a text-based user interface that:

1. allows players to input game mode and their guesses through the command line or console.

2. displays the feedback for each guess after the player submits it.

3. provides an option for the player to play again or exit the game.

*Refer to screenshot 1 below for a comprehensive sample user interface.

Screenshot 1: Sample user-interface

- 5 -

Name the class containing the main method RunApp.

Submit your program in a folder named LingoQuest

Assessment Rubric

Overall

Program

Functionality

User-

Friendly

Interface

Proper

use of

Comments

Proper

Conventions
(Camel case,

meaningful var

names etc.)

Name of

Folder &

Class/es

User

Input

Suitable

Prompts /

Messages

displayed

One or Two

player game

modes

Random

choice of

Target Word

Update user

attempts

remaining

Show the clue

code according

to rules

Proper use

of data

structures

and/or files

Maximum Score: 38
+ 2 for every extra

feature.

Validations

Modular

Code

Code

Efficiency Game mode

or Exit

Guesses

are five-letter

alphabetical

words

Invalid guess

does not

affect

attempts

Instruction

Case

Sensitivity

Avoid

Runtime

errors

0 – Not Satisfactorily | 1- Partly Satisfactorily | 2- Entirely Satisfactorily

- 6 -

